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Statistics of random world lines in a fixed electromagnetic field are considered. 
The equation for a vector j i  is obtained. This vector describes the density of 
random world lines in a pure ensemble. It is shown that in the two-dimensional 
space-time this equation coincides with the Dirac equation to within the terms 
of the order of magnitude of ( ~ / L )  2 (~ is Compton's wavelength, L is a typical 
length of the system). 

1. I N T R O D U C T I O N  

In  previous  pape r s  (Rylov,  1971, 1973, 1977) it has  been  shown tha t  
nonre la t iv is t ica l  q u a n t u m  mechan ics  can  be  cons ide red  as a nonre la t iv is t ic  
a p p r o x i m a t i o n  of wor ld  l ine stat is t ics  (relat ivist ic  statistics).  1 

There  are  two no t ions  of  the state of  the d y n a m i c a l  system. (1) A 
no t ion  of  the nonre la t iv i s t i ca l  s tate (n  state)  is used  when the s ta te  of  a 
sys tem is given at  a cer ta in  m o m e n t  of  t ime. The  n state obeys  a m o t i o n  
equat ion ,  which  descr ibes  evo lu t ion  of the  n state. F o r  instance,  the  
par t ic le  n state is d e t e r m i n e d  at  a cer ta in  m o m e n t  by  coord ina tes  q a n d  
m o m e n t a  p .  (2) A re la t iv is t ica l  s ta te  ( r  state)  is given over  all  space- t ime.  
The  par t ic le  r s ta te  is the  equa t ion  of the  wor ld  l ine x i = q i ( z ) .  F o r  the  
de te rmin is t i c  par t ic le  the coo rd ina t e s  of  its wor ld  line obey  some equa t ions  
which  are  res t r ic t ions  imposed  u p o n  poss ib le  r s tates  (see Rylov,  1973). 

IA comprehensive bibliography on quantum mechanics interpretation from the standpoint of 
classical mechanics can be found in the survey by Kaliski (1970) and in the book by 
Belinfante (1973). 
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The statistics of n states, i.e., statistics of points in the phase space, is 
the conventional classical statistics. We shall call the statistics of r states, 
i.e., statistics of world lines (as well as statistics of n dimensional surfaces 
in the case when the system consists of n particles) as relativistic statistics. 
The relativistic statistics are statistics of extended directed subjects (lines, 
surfaces). At this point the relativistic statistics differ from the classical 
statistics, which are statistics of zero-dimensional subjects (points). A set of 
peculiarities of relativistic statistics is connected with this circumstance. 

The application of relativistic statistics to random (nondeterministic) 
world lines is developed in papers (Rylov, 1971, 1973, 1977). Here I for- 
mulate briefly the main idea. Let  there be a classical particle, i.e., a particle 
whose motion can be described by a world line in the space-time. Let the 
particle motion be random. For  instance, the random (nondeterministic) 
character of its motion may be conditioned by accidental interaction with 
a medium (ether). For  description of the motion of such a particle it is 
necessary to use statistical methods, in particular, relativistic statistics. 

Application of the statistics, both conventional statistics and relativis- 
tic ones, to nondeterministic dynamical systems is determined by a statisti- 
cal principle (Rylov, 1973). 

The Statistical Principle. Any dynamical system S (deterministic or 
nondeterministic) whose state is described by quantities X corresponds to a 
deterministic dynamical system A, which is called a statistical ensemble of 
systems S. The statistical ensemble A is a set of systems S and has the 
following properties. 

(1) A s ta te j  of the statistical ensemble A is a state density of systems 
S. 

(2) The equations for the ensemble s ta te j  are invariant with respect to 
transformation j--*Cj (C = const). 

(3) If the ensemble state j has proper normalization (on one system) 
every additive quantity B, 2 attributed to the statistical ensemble as a 
dynamical system, is the mean value of quantity B for the system S. 

(4) If the state density j can be treated as the probability density to 
detect the system S at the state X, then the mean value ( F >  of any 
function F of the state X of the dynamical system S can be calculated by 
means of formula 

(e )  = f F(X)j(X) dX 

where integration is produced over all states X of the system S. 

2The quantity B is an additive one by definition, if the value of B for several independent 
dynamical systems is equal to sum of values of B for every system. Examples of additive 
quantifies are: energy, momentum, angular momentum. 
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The dynamical systems S forming the ensemble A are called elements 
of the ensemble A. 

A formal difference between classical statistics and relativistic ones 
consists in following. In the classical statistics the s ta te j  of the ensemble is 
a scalar, and point (4) of the statistical principle is always fulfilled. In the 
relativistic statisticsj can be a vector or a tensor. For this reason point (4) 
of the statistical principle is fulfilled sometimes, and mean values can be 
calculated for additive quantities only. 

2. T H E  S T A T E M E N T  OF T H E  P R O B L E M  

Let us consider a classical particle with a mass m and a charge e. The 
particle moves in the given electromagnetic field with the 4-potential Ai 
( i=0 ,  1,2,3). The world line x i= qi(r) ( i=0 ,  1,2,3) (r  is a parameter along 
a world line) is an extremal of the functional of action 

ee . . i ~ -- fmax( ' r " ' r " ) ( - -mc( (T ig ik~ l~) l /2 - - - - '~ -A iq  ) d r  
S[ q] - ~min(~',~") " 

dq' (2.1) q i=  dr 

Here r ' ,  r "  are values of ~" at the ends of the integration range. The term 
1 raised to the ~ power in (2.1) is supposed to be positive, g;k is a metric 

tensor, which in the inertial frame has a form 

gik 

r 

- 1  
- 1  

- 1  

(2.2) 

c is the speed of light, e is a component  of the world line orientation. 
The world line is supposed to be oriented, i.e., there is some de- 

termined direction of motion along the world line. This direction can be 
described by means of the nonzero vector l i, which is tangent to the world 
line and changes continuously along it. On the world line let there be some 
parametrization P, which is performed by parameter r (i.e., all points of 
the world line are numbered by parameter T). Then 

l i "~ C dqi  (2.3) 



648 Rylov 

where C is a factor of proportionality. Let us call component e of the world 
line orientation e with respect to parametrization P as the quantity 

e = sgn C (2.4) 

e takes the values +_ 1 and is transformed with the transformation of the 
parametrization P 

z--->z' = ~(~-) (2.5) 

accordhag to the law 

~,r t 

e--->e' = e sgn 0"r (2.6) 

If e is transformed according to (2.6), the integral (2.1) is invariant with 
respect to any transformation (2.5) of the world line parametrization. 
Change of the sign of the component  e of the world line orientation (with 
constant parametrization P)  leads to a change of the particle by antipar- 
ticle and vice versa. 

Usually the world-line orientation is connected with the direction of 
increase of the parameter r along the world line. But such a method 
forbids the transformation (2.5) with ~0/0~ <0.  The method which is used 
here is more convenient in that respect, that it removes all restrictions 
upon the manner of parametrization and allows any transformation of the 
form (2.5). 

Orientation e is like a usual vector. Components A i of the vector A 
change with transformation from one coordinate system to another, al- 
though the vector A does not change. Likewise e is a component of an 
orientation e with respect to some parametrization of the world line. With 
a parametrization transformation the component e changes, generally 
speaking, whereas the orientation e is invariable. 

The electrical charge of the particle, which is described by the action 
(2.1), is equal to ee, but not e. The electrical charge changes sign with 
changing the world line orientation (for example, e--->- e). This means that 
change of the world line orientation transforms a particle into an antipar- 
ticle (Rylov, 1970). 

Let us consider the statistics of dynamical systems. Each system 
consists of a particle, which moves in a given electromagnetic field. In 
accordance with the statistical principle a statistical ensemble corresponds 
to the dynamical system (2.1). Let us suppose that the world lines of 
particles have a special property. One and only one world line passes 
through each point of a region ~ of the space-time. This means that the 
world lines of the ensemble fill the region f~ without intersection. Such an 
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ensemble is called a simple one in region fL The world lines described by 
the action (2.1) are smooth. For this reason an arbitrary ensemble of such 
lines can be considered to consist of simple ensembles, i.e., elements of the 
arbitrary ensemble A are deterministic dynamical systems--the simple 
ensembles, which in turn consist of uncrossing world lines. Thus considera- 
tion of the arbitrary ensemble can be reduced to consideration of the 
simple ensembles. 

Let us consider the properties of the simple ensemble. Such an 
ensemble can be considered a certain continuous medium. Let us intro- 
duce Lagrange's coordinates ~= (~l, ~2, ~3) numbering the particles of the 
ensemble. Let us introduce the designation ~o=Z. The action of malay 
noninteracting particles is equal to the sum of actions of these particles. 
For this reason the action of the particle ensemble can be written in the 
form 

f~[ [Oq i Oqk) 1/2 8e Oq i ] 
S [ q ] =  -mC[ ~ogik--~o ---~-Ai(q)--~o [d4~[ (2.7) 

where d4~--d~od~ld~2d~3 . Here qi=qi([~), ~= (~0, ~1, ~2, ~3)" The world 
line of the particle with a number ~= (~1, ~2, ~3) is given by functions 

x'=q'(~0,,) (2.8) 

with fixed value of ~. 
One and only one world line passes through each point x of the region 

[2 of the space-time. For this reason Lagrange's coordinates ~=  
{~0, ~l, ~2, ~3} are single-valued functions of coordinates x of the point P 
in the region f~, and Jacobian 

0(6o, 61,62, 63) J= ~0  (2.9) O(x O,x 1,x 2,X 3) 

Let us consider a vector field 

ji~ji(x)=EEO OJ 
0~0, i ' 

i=0 ,  1,2,3 (2.10) 

where e is the component of the world line orientation with respect to its 
parametrization P, which is performed by parameter ~0 = % and 

e 0 = sgn J (2.11) 

~i,k=--O~i/OX k, i, k=O, 1,2,3 (2.12) 
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J is considered a function of ~i, k" By means of the identity 

OJ ~x i 
- -  - - J  ( 2 . 1 3 )  

the (2.10) can be rewritten in the form 

�9 i OJ Oxi Oxi 
J =ee o 0~o,---- ~ =elJ[-~o = l J  e--~-r (2.14) 

It follows from (2.14) that j i represents a vector which is tangent to 
the world line and does not depend on the parametrization P of the world 
line. The flux of the vectorj i through the three-dimensional area ds i can be 
represented in the form 

d N = l j ' d s i  (2.15) 

Taking into account that according to (2.2) in the inertial frame 

I gl = Idetll g, klll = c2 (2 .16 )  

one obtains 

l d s _ l g l  ~/20(J-') ,~ O(J -~) 
C ~ ~ a ~  aX i'O 

d~ (2.17) 

where J - 1 = 1/J  is considered to be a function of quantities x i' k = Oxi/O~k" 
d~ is a volume element on the space of quantities ~= (~l, ~2, ~3) 

d~ = d~l d~2 d~3 (2.18) 

The world line flux through ds~ is obtained in the form 

dN = l f ds, =e lJ  [ OM O ( d - ' )  0~0 Oxi,~ d~=eeOd~ (2.19) 

Let us chose numeration ~ of the world lines in such a way that an 
unity volume d~ contains one world line. Then [dN I represents the number 
of world lines crossing the area ds r dN has one sign for particles and 
another for antiparticles. This means that the vec tor f  =eeoOJ/O~o. t repre- 
sents 4-vector of the flux density of particles and/or  antiparticles depend- 
ing on the sign of dN. 
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Let us consider (2.7) as a functional of functions ~i--'~i(x)---~i(q), 
which are reverse functions with respect to qi(~). Then (2.7) takes the form 

f~[ .. . ee .i S[~,p,j]= - -mc( j ' g i j k ) l /Z - - - -A  d 
c 

d ~ = ~ ~  3 (2.20) 

Here integration is produced over the region ~ of the space-time. Pi are 
Lagrangian multipliers, which introduce designation (2.10). Owing to (2.9) 
extremals of the action (2.20), considered as a functional of functions 
4, P, J, coincide with extremals of action (2.7), considered as functional of 
qi(~). 

Thus the action (2.20) describes an evolution of the n state of the 
simple ensemble. The n state of the simple ensemble is described by the 
quantities f ,  p~, ~i ( i--  0, 1, 2, 3). In general, the quantities Pi and ~ can be 
excluded. Then the n state of the simple ensemble is described by v e c t o r f  
and its time derivatives. In short, the n state of the simple ensemble of 
world lines is described by the flux dens i ty j  i of the world lines. 

An arbitrary ensemble can be considered as an ensemble whose 
elements are simple ensembles. Generally speaking, an n state of the 
arbitrary ensemble cannot be described by means of current densi ty j  i and 
its time derivatives only. 

Let us introduce a notion of a pure ensemble. The pure ensemble is an 
ensemble whose n state can be described by means of quantities j ;  and 
their time derivatives. These quantities obey some equations which de- 
scribe the n-state evolution. The above-mentioned simple ensemble is a 
pure one. The reverse statement is not correct, generally speaking. Not  all 
pure ensembles are simple. In other words, an ensemble can be pure and 
be described by ji, but it does not consist of uncrossing world lines. An 
ensemble which is not pure is called a mixed ensemble. The mixed 
ensemble can be considered as an ensemble whose elements are pure 
ensembles. The notion of a pure ensemble is important when an ensemble 
of nondeterministic world lines is considered. In this case the ensemble 
cannot be a simple one, as far as world lines have random breaks. 
Apparently, an ensemble of random world fines, which do not  cross inside 
some definite region, does not  exist. But an ensemble whose n-state is 
described b y f  does exist (the pure ensemble). 

From the formal standpoint the action (2.20) describes a certain 
continuous medium: a charged relativistic dust, moving in a given electro~ 
magnetic field. A thermal motion of the dust particle is absent. 
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Let us suppose that besides electromagnetic force some random force 
acts upon every particle. As a result of the action of this force the motion 
of the particle becomes random. Something like relativistic Brownian 
motion arises. The action (2.20) is unsuitable for describing ensembles of 
such nondeterministic particles. It is necessary to make some assumption 
about a character of the random force. Taking into account this force one 
obtains some additional terms in the action (2.20). These terms describe 
the influence of the chaotic motion of particles upon the mean motion of 
particles of the ensemble. This mean motion is described by the flux 
density j i . 

We shall not make any assumption about the random force, but shall 
make some assumption about the additional term in the expression of 
action (2.20). It is known from the Brownian motion theory that the 
influence of chaotic motion upon the mean motion manifests itself in the 
diffusion of particles. The particles travel from regions of high concentra- 
tion into regions of low concentration of particles. This phenomenon can 
be taken into account by adding into (2.20) a term containing derivatives 
aji/Ox k. 

Naturally, this term has to contain a combination of derivatives that is 
relativistically invariant. Besides I want that description to include a 
possibility of particle-antiparticle pair generation. For this the additional 
term has to imitate a field that generates pairs. Such a field can be 
introduced even in classical relativistic mechanics (Rylov, 1970). 

For this it is necessary to consider a particle of mass m. Its world line 
xi= qi(,r) ( i=0,1,2,3)  is described by the action 

_ f max(,'y) S[ q]--  Jmin(,',z") mc[iligik~k--otf(q)] l/2d'r (2.21) 

with a---~0. Here f(q) is an external field, a given function of coordinates. 
For certain functions f(q) the world line [extremal of functional (2.21)] can 
turn backward with respect to time. It can describe generation and 
annihilation of particle-antiparticle pairs, f(q) is a field that generates 
pairs of particles. A world line must not depend on the manner of 
numeration of its points. For this reason the action should be invariant 
with respect to transformation (2.5). This can be achieved tending a to + 0 
in (2.21). Then, generally speaking, limiting ( a ~  + 0) extremals will not be 
extremals of the limiting (a--~ + 0) functional, i.e., the generation phenome- 
non is preserved with a ~  +0. This can be seen from the fact that the 
limiting Jacobi-Hamilton equation corresponding to (2.21) has the form 

[ ~S ik ~S f ( q ) ~ g  ~qk --m2c2) =0 (2.22) 



Quantum Mechanics as Relativistic Statistics HI 653 

At the points where f(q)= 0, the conventional Jacobi -Hamil ton  equa- 
tion 

OS ik OS -~q/g ~qk -m2c2--'0 (2.23) 

can be violated. At these points a break of world line (and, in particular, 
pair generation or pair annihilation) is possible. 

It is worth bearing in mind that the pair generation is connected with 
introducing the term af(q) inside the term raised to the 1//2 power in 
(2.21). If we expand (2.21) into a power series in a and confine ourselves to 
the terms of first order, then the pair generation disappears. 

Thus, introduction of a f i e ld f (q )  describing particle generation in the 
classical approximation is possible. Only a source of this field and its sense 
are not clear. 

Let us add a term into (2.20). For  this term to imitate the field f(q), it 
should be added to the term inside the term raised to the 1//2 power in 
(2.20). Let us postulate an action of the pure ensemble in the form 

S[~,p,j]= f~[--(m2c2jigi~jk - -~BikBh2 ik\'/2) 

ee i [ OJ ] [d4x[ 
C A.J +pi~eeO~o,i--Ji  ) (2.24) 

where 

Bik mJi, k --Jk, i, B ik = ~j ~_il_kSnDis (2.25) 

h is Planck's constant. The comma denotes differentiation: 

J,,k- OJ /Ox 

The additional term is universal in the sense that it contains universal 
constants c, h, and derivatives ofj i only. It does not contain any parame- 
ters that describe the particle. The additional term is constructed from flux 
density components j i  in the same way the Lagrangian of the electromag- 
netic field is constructed from components of the 4-potential A;. The 
expression in square brackets in (2.24) is generally covariant and has the 
same form in any curvilinear coordinate system. 
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3. EQUATIONS OF M O T I O N  

Let us represent (2.24) in the form 

S[~ ,p , j ]=  f a [ - m c K -  ee " "i [ ~J 

where 

and 

(3.1) 

h 
h = - -  ( 3 . 3 )  

mc 

is a Compton's wavelength of the particle. Varying the action (3.1) with 
respect to (~ leads to the following equations of motion: 

~s [ a2J \ 
8~i \ 0, l i ,k 

(3.4) 

where 

O k = a / ~ x  k 

Varying with respect to p; leads to equations (2.10). It is convenient to 
exclude Lagrangian variables (i and to write equations in terms of Eulerian 
variables. Let us use the following identities: 

a aJ a a~J 
- -  ~ 0 ,  

OX i O~k, i aX k a~s,lO~i, k 

~J O2J -- bJ  8 f '  O~0, 8~ (3.6) 
O~O, lO~i,k ~i's 0~0,1 k 

= 0  (3.5) 

By means of (2.10) the first identity of (3.5) can be written in the form 

Multiplying (3.4) by (i,, and using identities (3.5), (3.6) one obtains 

l j ' (  a k( ) - a,( ) } = 0 (3.8) eeoPl eeoP k 

  k.,k)lJ2 (32, 
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As far as ee o = --+ 1, the equations (3.7), (3.8) can be rewritten in the form 

~ j~=0  (3.9) 

jt(0h Pl-- 0tPk ) = 0 (3.10) 

The equations (3.9),(3.10) are fulfilled everywhere except, perhaps be, 
those points where ee o changes sign. 

Varying with respect t o j  i leads to the equations 

mc )~2mc (gklgil I e e  A 
p ; = - - / ~ j , - T 0 k ~  ] ~  - -~-  ; i=0 ,1 ,2 ,3  (3.11) 

Finally, let us write those equations (2.25) that contain a time derivative 0o: 

O o j a = - B o a + O j o ,  a=1 ,2 ,3  (3.12) 

The system of equations (3.9)-(3.12) contains 10 independent equa- 
tions of the first order. It contains 10 quantities: j i  ( i=0, 1,2,3), Pa, Boa 
(or= 1,2, 3). As far as quantities P0 and B~./~ (a, f l= 1,2,3) are concerned, 
these quantities can be calculated throughj' (i = 0, 1,2, 3), Pa, Boa (a = 1,2, 3) 
given at a definite time moment. The P0 is expressed by means of (3.11) 
with i=0.  The BaB are expressed by means of (2.25) with i, k =  1,2,3. These 
expressions contain only space derivatives. Thus, the n state of the ensem- 
ble is determined b y j  i (i=0, 1,2,3), Pa, Boa (ct= 1,2,3). Besides this it is 
necessary to fix the sign of the quantity K defined by (3.2), because K is 
defined by (3.2) to within the sign. 

In the case when 2~--0 and the action (3.1) is reduced to the form 
(2.20), the problem of the sign of K is solved easily. K should be chosen 
positive, because the action has a minimum in this case only. Besides that, 
the sign of K is conserved along lines of the vector j i  (along world lines) 
owing to the equation of motion. 

In the case )~=/=0 the problem of choice of the sign of K becomes 
complicated. Although the condition K~> 0 can be imposed and this 
corresponds to the minimum of the action (3.1), whether the sign of K is 
conserved because of the equations of motion remains open. 

Let q~ (x)=const  be the equation of the characteristic surface of the 
system of equations (3.9)-(3.12). Then the characteristic equation of the 
system (3.9)-(3.12) can be represented in the form 

~6 (~i 3 .k 2 l 
(3.13) 
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where 

B .m . . . .  - - - g  lBlm, Bik = Bitg lk 

and the vector 

d~i==----------aid~, dp i= gikdpk (3.14) 

describes a normal of the characteristic surface. The characteristic equa- 
tion (3.13) is Lorentz invariant. Every null direction q~i (i.e., ~;ffi=0) is 
characteristic (threefold degeneracy). Every direction ~i, which is orthogo- 
nal to j i, is characteristic (twofold degeneracy). Finally, the direction ~i, 
which obeys the equation 

~i~'kq~k=O (3.15) 

where 

gik~_.gik..[_ h___~_2 BiBk t  
4 K  2 .t (3.16) 

is characteristic. The equation (3.15) has real solutions (see Appendix). 
Thus all characteristics of the system (3.9)-(3.12) are real. 

Let us write the expression of the canonical energy-momentum 
tensor, which is defined by the relation 

T.i _ 0L i 
k-- ~aS ~Us, i Us, k-- i~k (3.17) 

where L is the Lagrangian density in the action (3.1), and u, denotes a set 
of variables which are variated in (3.1): u = (~,p,j}. Doing the calculation 
and omitting terms that have the form of a divergence, one obtains 

i i 1 -i- ~2  T.k = mC( K~k + --g (J-Jk --j~Jl~) -- - ~  ( Bkl]i't"b Blffl, k) ) "q'- -'-~ ' "i 

(3.18) 

In particular, the energy density is expressed in the form 

0 / jj~, ~2 ) ee .o 
T .o=rne[K+--g-+4c-- -~KS~Bo,  ~ + T A o J  (3.19) 
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It follows from (3.19) that in the absence of an electromagnetic field 
the sign of the energy density coincides with the sign of K. This means that 
we should consider K to be positive: 

K > 0 (3.20) 

Apparently, the condition (3.20) should be taken even if it happens that the 
sign of K is not an integral of the equations of motion (3.9)-(3.12). In this 
case the (3.20) should be considered as an additional condition in the 
search of an extremum of the action (3.1). 

Later on, investigating properties of the system (3.9)-(3.12), one 
assumes for generality that K can have any sign. 

4. TWO-DIMENSIONAL CASE 

Let us consider the two-dimensional case (one time coordinate and 
one space coordinate). Then the system (3.9)-(3.12) can be written in the 
form 

J~ O l Po - OoP l) = 0 

rnc . + ~ Zmc 0 [ B~ "~ ee A 

mc . . ~ Zrnc., [ Bol ~ ee A 
po = - -Klo-  - T -  o , [ - - k -  } - - / o 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

1 
-cS 00Jo - OlJl = 0 

O0Jl = - -  Bol  + ~ l J 0  

The solution of the equation (4.1) can be represented in the form 

Po = 00S, Pl  = 01S (4.6)  

where S is a certain function of coordinates x = ( x ~  1) having the 
dimensionality of an action. 

Substituting (4.6) into (4.2) and into (4.3) one obtains 

i n c .  h2m ~ [ Bol ~ _  ee A (4.7) 
~ l S = - - - K - J l - I - ~ c  O[ K ] c 1 

i nc .  )~2mc [ Bol ] _  ee A 
O~176 "* x r ,  ] c o (4.8) 
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Owing to (2.2) one obtains 

[ 1 2 2 ~2 2 ~1/2 
K = ~ - - ~ j o - j ,  + (4.9) 

Thus the system of equations (4.4),(4.5),(4.7),(4.8) of the first order is 
obtained. It contains variables Jo, Jl, S, B01. 

The characteristic equation of the system (4.4),(4.5),(4.7),(4.8) has a 
form 

~t2m(~2 q~2-- tYPf )2 = 0, t~i ~ OX i (4.10) 

A solution of the (4.10) can be represented as 

x+ct=cons t ,  x----x l, t=-x ~ (4.11) 

with every characteristic being bicharacteristic. Apparently a direct in- 
tegration of the system (4.4)-(4.8) is impossible. Essentially those solutions 
are of interest that describe a bunch with a size L>>X. The flux compo- 
nents (Jo, Jl)  are supposed to vary slowly inside the bunch, so that 

Xl01Jol~ XJo . -Z- <% 

Ac XlOoJ, l,~--Elj, l<<clZ I (4.12) 

-2.2,-.., "2,~.~ -2 .2  "2 If besides this c 76-----J1 --c Jo - J I ,  then together with (4.9) these estima- 
tions give 

}k2Bgl ~k2Bgl 1 . 2 [~_~_L << K 
c------~- << I j ,  12, c-----S-- << ~-~J0, (4.13) 

This allows one to neglect the terms that contain h in equations (4.7)-(4.9). 
The equations (4.7)-(4.8) can be written in the zeroth approximation in the 
form 

mc . ee A 
OqlS= -- "Ko'o J1 - c ' 

me . e e  A 
OoS=-  Jo- 7 o 

(4.14) 

(4.15) 

/ 1 \1/2 
Ko=[  ~-~j~-j~ ) (4.16) 
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The system of equations (4.4),(4.14)-(4.16) describes a motion of an 
ensemble of classical particles in an external electromagnetic field. This 
description is satisfactory until inequalities (4.13) are fulfilled. 

Let the ensemble be a bunch of particles with the same momentum p 
and energy E. Let the size of the bunch be L>>)~. The system of equations 
(4.4)-(4.16) describes a motion of the bunch satisfactory everywhere 
except the small regions near the turning point. The fact is, that in the 
strong enough electromagnetic field there can be regions which cannot be 
achieved by the particles with energy E. The boundary of such a region 
(here it is one dimensional) is the turning point. Reaching this point, the 
bunch of particles reflects and travels backward. At one side of the turning 
point J0 = 0, and at the other side J0 ~0 .  Thus near the turning point the 
gradient of j0 is large, and conditions (4.13) are not fulfilled. It is necessary 
to take into account the neglected terms. 

Let us return to consideration of the system (4.4)-(4.9). Let us 
introduce dimensionless quantities (phases) 

S )~Bol 
x=  ~ (4.17) 

ep= h ' 2cK 
Let us consider the case when the phase x is small. Let us try to find a 
system of linear equations which differs from the system (4.4)-(4.9) slowly, 
if x is small. 

Adding and subtracting (4.7) and (4.8), one obtains 

x ee l ( l j o + J l )  

 4.19, ~(~00__01)(fp..}__ .~)__ ~Cc2(1A0_A1) = 1 1 

Adding and subtracting (4.4) and (4.5), one obtains 

c ol (4.20) 

I 1 .  I B 

Let us introduce designations 

[ 1 ~1/2 / 1 ~1/2 
W+=~cJo+j ,  ) , W _ = [ e j o - j ,  ) (4.22) 

~+ ~-~, % O0 + ()1, 0 = 1 ~ 0 - - 0 1  (4.231 
c r 

S A Bol x S A Bol x 
/ z + = ~ + 4 - - ~ - - ~ - = ~ + ~ ,  /~-=  h 4c K = c p - ~  (4.24) 
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Ifj  i is a timelike vector, i.e., IC-~ol > tJll, then W+, W_ are real f o r j o > 0  
and W+, I V  are imaginary for Jo < 0. One obtains from (4.9) 

W +  W 
K = (4.25) 

(1 - g2) 1/2 

In terms of (4.22)-(4.24) the equations (4.18), (4.19) take the form 

e e  {1  A +A ~'W-O+Ix- mc2k c o l]W-+W+(l-tr 1/2=0 ( 4 . 2 6 )  

ee / 1  \ 
AW+O~+---~c2(cAo-A1)W + + 14:_ (1 - x2)1/2=0 (4.27) 

The equations (4.20), (4.21) can be represented in the form 

/r 
AO+ W = W+ (4.28) 

(1 - ~2)1/2 

/r 
X 0  W+ = W (4.29) 

(1 - ~2)1 /2  

If W+, W_ are real (imaginary), then owing to (4.24) the equations (4.26) 
and (4.28) represent to within x, respectively, real (imaginary) and 
imaginary (real) parts of the equation 

ee /1  ) . 
-ihO+(W_eO'-) - mc2(cAo+Al W_e'~'-+ W+e'~+=0 (4.30) 

Likewise, if W+, W_ are real (imaginary), then the (4.27), (4.29) represent 
to within x, respectively, real (imaginary) and imaginary (real) parts of the 
equation 

_i~O_(W+eO,+)_ ee (1Ao_A IW+e#,++ W ei~_=0 (4.31) 
/,/,/C 2 \ c  /1 -- 

The equations (4.30), (4.31) are linear with respect to variables W+ 
exp(i/~+), W_ exp(i/~_). This means that in the first approximation with 
respect to quantity x the system (4.26)-(4.29) can be reduced to a system 
of linear equations. 
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However, using complex variables IV+ exp(i/t+), W_ exp(i/t_) is possi- 
ble only in case W§ and W_ are real or imaginary simultaneously. In this 
case only the equations (4.30),(4.31) are equivalent to the system (4.26)- 
(4.29) to within K. In the case when one of quantities IV+ or W_ is real 
and another one is imaginary, this equivalence is destroyed. In the com- 
mon case instead of the imaginary unit i its matrix analog ~- can be used. ~" 
is a two-dimensional matrix 

,) 0) (432) 
- 1  0 0 - 

r has the same ProPerties as the imaginary unit i has. r is another 
imaginary unit. It differs from the imaginary unit i, which can arise in 
expressions of IV+, IV_. For this reason these imaginary units can be 
separated. 

Let us introduce new variables 

rP+ = 2-~/2 W+e~'l'§ 1 ) = 1 

W+ 
2-7~- (cos/t + +sin/ t+)  

W+ 
2-2-i7 (cos/t + - s i n / t+ )  

q ~ _ = - -  1 

21/2 
[ W2~ (cos/t_ + s i n / t )  

W_ e *v- (11) = 

(cos/t_ ~ s i n ~ # ~  
' [ 21/2 

(4.33) 

In terms of ep+,rp_ the equations (4.26)-(4.29) can be written in the form 

(1 - x2) 1/2 

[-hrO_---~c2(1Ao-Al)]cp++e~K((1-t~2) 1/2-  (1 _ xr--2)1/2 ~')tp_ ---0 

(4.34) 

If x is small the equations represent to within x 2 linear equations with 
respect to variables ~p+, ~0_. 
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Let us introduce now the four-l ine co lumn tp 

1 

~-SO+Jl) c~ s '  4c ~' Bo,K 

c J o  + J l )  sm~ -~- + 4c  K 

(1..~'/~ /s XBo, 4) cJO-J1 ) COS~ ~ - -  4"-'C " - g - -  

(l jo_j, ' l /2 �9 [ S ~ ) ) sln~ h 4c B~ ,n'4 

1 

~+cos(~+ ~-4) 
/s ~+s++~-4) 

.,_co+- ~ 4) 
K w~i+ 2 ~-) 

(4.35) 

and  four-line real matr ices  

o) o) o) 

I~176 ( ~ o )  ~o__, o o 
P = C~/170"F1 ----- 0 '7" 0 0 0 

0 0 1 

I is a unit  matrix.  The  matr ices  satisfy the following relations: 

(4.36) 

yiyk+~/k'y'=2glgI, i , k - - 0 ,  1 

y ~'k-- ~'ky , - "t~v, i , k = 0 ,  1 

zl v = w- 1, ~.oV = _ ~ro, z2 __ _ I ,  Zo 2 = I (4.37) 

Tak ing  into account  (3.3), the equat ions (4.34) can  be wri t ten in the fo rm 

[ Ti(-li'rlOi- ee A] + ~ ] ~ -  '] (4.38) 
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Where M is a matrix: 

M = m [ 1 - l l - x 2 l - ' / 2 e - ' ( l + v x - r 2 ) ]  = m~- -~  + - ~ [ w 3  5 1r O(K4)) 

(4.39) 

I(1- ~2)'/21 IW+W_l 
a =  (1-~2)1/2 -- W + W _  sgnK (4.40) 

a can take four possible values: + 1,_+i. Real values of a correspond to 
x 2 <  1 (timelike vector j i ) .  Imaginary values of a correspond to ~2>  I 
(spacelike vector ji) .  The sign of a is determined ambiguously by the 
quantities ji ,  % B01, sgn K. In this sense the sgna is an independent varia- 
ble, which should be given at the initial moment. Such an ambiguous 
determination of a is connected with the ambiguous determination of the 
colunm q~ by means of (4.35). Really, the (4.35) contains two double-valued 
functions I41+ and IV_, which are determined by (4.22). If J0, Jl, % r are 
fixed, then at least four different ways of determining ~ exist. The four 
ways can be obtained from one of them by means of a combination of the 
following two transformations: 

7"1: r162 - r  a~a '=a ,  W+-o- W+, W --->- W 

(4.41) 

T2: ~-->~' = c',/~ a-->a'=-a, W+--.',- W+, W_--> W_ (4.42) 

The variables j i ,%lc,  s g n K  are not changed by transformations 
(4.41),(4.42). The equation (4.38) is invariant with respect to transforma- 
tion (4.41), (4.42). 

Let 

1'~1 = iPl (J0J1, (j0, K) (4.43) 

be a certain way of determining the column ~. Then 

42= r,q~, % = r2r 44 = r2rl41 (4.44) 

are another three possible ways of determining the column ~p. The follow- 
ing relations hold: 

( T I T  2 - T2T1)~b-- 0 , T2Lp---- ~p, T24 = ~p (4.45) 
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For this reason the transformation of the form T~,T~ ~ tp ('~1' S2 are integers) 
does not lead to new ways of determining ~. 

The reverse transformation from ~ to variables J0, Jl, q0, tr can be 
represented in the form 

j0 = ( 7 % ,  jJ = q~,/1~p (4.46) 

t b ~  
tan(2rp) = ~'rl ' r0--T , t a n K = -  

qT.0  qT, 

W+ W --- a qTq, [ cosx (4.47) 
sgug- -  a I W+W---- I cos~ qTq~ 

where 

~--c~7 ~ (4.48) 

and ~ represents a line obtained by the transposition of the column ~ 
It is easy to see that the relations (4.46),(4.47) are invariant with 

respect to transformations (4.41),(4.42). Beyond this the equation (4.38) 
and relations (4.46)-(4.47) are invariant with respect to transformation: 

if---->+' = e ' ' ~ ,  a--->a' = a (4.49) 

where a is an arbitrary real number. Thus, uncertainty of the choice of the 
column ff increases. ~p can be chosen to within a constant phase factor 
exp(~'la ). (4.41) is obtained by a=~r. 

It follows from (4.47) that # determines phases ~0 and x to within an 
additive constant only (s~r/2 and nrr, s and n are integers). The ambiguity 
of ~p is unessential, because according to (4.6) and (4.17) the qo is a potential 
of p,.. The constant additive term gives no contribution into Pi. But the 
ambiguity of K is essential. First of all let us note that ~ is determined 
unambiguously by the second relation (4.47) in that case when j i  is a 
timelike vector, i.e., 

~ j o  2 - j ~  > 0 (4.50) 

In fact, it follows from (4.9) and (4.17) that 

2c ~[ (1/c2).~-j~] '/2 
Bm= ~ ( 1 - x 2 )  l/z (4.51) 
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It follows from this that in the case (4.50) with real B01 the x can change 
inside the interval ( - l ,  1) only. This condition together with (4.47) de- 
termines x single valuedly. 

If the v e c t o r f  is spacelike and B01 is real, then it follows from (4.51) 
that I~l > 1. In this case the phase x is determined from (4.47) ambiguously. 

Let us solve (ambiguously) the second relation (4.47) with respect to r: 

x =  - arc tan  ~ p ~  +n~r  ( 4 . 5 2 )  

where n is an integer variable. Substituting (4.52) into (4.39), one obtains 
an expression of the matrix M through ~p. This permits one to consider the 
equation (4.38) as an equation for the determination of the four compo- 
nents of the function ft. Generally speaking, this equation is nonlinear, 
because M depends on tp. But, if Ix[<<l, then according to (4.39) M<<m, 
and the last term of (4.38) can be neglected. In this case the linear equation 

yi(-h'rlOi- e.~ec Ai )tp-+-otmctp=O (4.53) 

arises where a = ___ 1, because [ x 1<< 1. 
A solution of the equation (4.53) can be 

solutions of two linear equations 
obtained by 'combining 

yi(-h'rlO,- e---~ A,)~p+mc~b=O (4.54) 

y'( - h'r,a,- ~-~ Ai )tp- mc~=-O (4.55) 

Which of the two equations (4.54), (4.55) should be taken in a given region 
is determined by the sign of the variable a from (4.40), i.e., it is determined 
essentially by choice of signs of IV+ and W in (4.35). 

If r<< 1 and K >  0, then 

(4.56) 

Equation (4.54) corresponds to the positive a, and (4.55) corresponds to the 
negative a. A transition from one equation to another can take place if 

~vtk = + tan 1 (4.57) 
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In this case I xl = 1 and the last term of equation (4.38) cannot be 
neglected. Thus, between the regions where tp satisfies (4.54) and (4.55), 
there is a region where ~ satisfies (4.38). 

In addition, if I x l = 1 and [ B011 < m then according to (4.51) ji be- 
comes null (c-Zj~-j~ = 0). In other words, let there be two regions. In one 
of them equation (4.54) ( a =  1) is fulfilled. In other one equation (4.55) 
( a =  - 1 )  is fulfilled. Then by transition from one region into another the 
vector ji becomes null, or B01 becomes singular. If Bol has no singularity 
anywhere and ji is timelike everywhere, ~p satisfies one of the equations 
(4.54), (4.55) everywhere. 

Each of equations (4.54) and (4.55) is like a two-dimensional Dirac 
equation. In fact, the two-dimensional Dirac equation has the form 

yJ(-ih~j- e---f Aj)tPo+mCtPo=O (4.58) 

where 

) (4.59) ,o=1(o o)' r O_l, 1), %=(,/,2 

and ~Pl, tPz are complex variables. 
Equation (4.58) can be reduced to equation (4.54). For this it is 

sufficient to substitute the imaginary unit i by �9 and to use matrix 
representation (4.32). Then every complex number z is represented in the 
form 

z=Rez+ilmz=Rez+rlmz=( Rez  I m z ]  
- I m  z R e  z ! 

qJ0 takes the form 

= 

Re tp I Im ~1 
- Im tpi Re tpl 

Re ~P2 Im q~2 

- Im ~P2 Re qJ2 

(4.60) 

The matrices iT~ are substituted, respectively, by "/'1"~ 0 and ~'lT 1, where 
,r ~ and y l have the form (4.36). Each column of the matrix (4.60) is real 
and satisfies the equation (4.54). 

Thus, the continuum of solutions of the two-dimensional Dirac equa- 
tion (4.57) constitutes a continuum of real solutions of equation (4.54). 
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Expressions of components of j i  in Dirac's theory coincide with expres- 
sions (4.46) of real solutions of equation (4.54). But equation (4.54) has 
imaginary solutions together with real ones. The imaginary solution can be 
obtained from the real one by multiplying by the imaginary unit i. Let Lp be 
a real solution of equation (4.54). It corresponds to a solution ~k0 of 
equation (4.58) and to some flux density j i  with J0 >0.  The imaginary 
solution ~im = iff of equation (4.54) corresponds to flux density ( j i ) i  m = _ j i  
with (J0)im = --J0 < 0. ~bim does not correspond to any solution of the Dirac 
equation (4.58). In fact, in Dirac's theory J0 >/0 always, but in the case of 
equation (4.54)j 0 can be both positive and negative. There is no privileged 
direction of time. In this sense a set of solutions of equation (4.54) is more 
abundant than that of the Dirac equation (4.58). 

As concerns equation (4.55), it is in some sense equivalent to equation 
(4.54). In fact, if ~p is a solution of (4.54) then ~p'=cy~ is a solution of 
(4.55) and vice versa. The same values of j0, Jl, q~, x correspond to ~b and ~p', 
but values of a differ by sign [cf. (4.42)]. 

Thus, in the case I KI<<I [in this case (4.50) is fulfilled] the system 
(4.4)-(4.8) can be approximated by one of the equations (4.54),(4.55), and 
the dynamical system state is described by the wave function (4.35) 
completely. Each of the equations (4.54),(4.55) represents essentially the 
Dirac equation with the difference that the imaginary unit i is replaced by 
a real matrix ~l that has properties of the imaginary unit i. 

In the case when x is not small but Ixt < 1 (and consequently (4.50) is 
fulfilled), the system (4.4)-(4.8) can be replaced by equation (4.38) with the 
wave function ~ describing the dynamical system state completely. 

Finally, in the case when Ixl > 1 [and (4.50) is not fulfilled], the system 
(4.4)-(4.8) can be replaced by equation (4.38), but already the wave 
function (4.35) does not describe the dynamical system state completely. 
This fact is connected with that, that according to (4.52) ~p determines the 
phase x to within n~r only. For determination of the n state of the 
dynamical system it is necessary to give not only ~p, but still, generally 
speaking, an integer quantity n, which is a certain function of x. 

Apparently, n can be determined through ~p given at a certain moment 
of time, if one uses continuity of ~ and n--0 inside those regions where the 
condition (4.50) is fulfilled. But such a determination of n is not local, n ( x )  
is determined by the form of the function ~p, not by the value of ~ at the 
point x. In other words, n can be a functional of ft. The sense of ~b is clear. 
This is a wave function or some analog of it. The sense of the integer 
variable n is unclear. This problem needs a special investigation. Here I 
confine myself to the following remark. 

In the case when at every point of space-time there are only particles 
or only antiparticles, the flux density vector  ji is timelike. The condition 
(4.50) is fulfilled and n = 0. Violation of (4.50) can arise in that region of 
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space-time where there are both particles and antiparticles. The total f l ux f  
consists of the particle flux j]  and of the antiparticle fluxj~: 

j i  .i .i --jp +j,~ (4.61) 

Each of the vectors j~ and j~/is timelike. As far as jo  and jo  have different 
signs, then in the sum (4.61) the time components are compensated 
partially or completely. As a result the violation of (4.50) is possible. Then 
n ~a 0 can arise. 

It is useful to write the expression (3.19) for the energy density in the 
case of violation of (4.50). Taking into account (4.17),(4.22),(4.25), and 
supposing that K >  0, one obtains 

TO=mc( 1_1r 2 ~,/2[ 1 .2+ 2 (1/c2)j2-j  2 
�9 (1/c2)j2_j2] [~-/So ~_~-~ x 2) (4.62) 

Hence it follows that with fixedj0,ji  and 1 1 oo, 

mc( (1/c2)j 2 t-2 Z j  2 - .211/2)[ 1/r (4.63) 
TO= i(1/c2)j2 j21~/2 c2 0 .]1 

i.e., with large (and consequently large n) the energy density is propor- 
tional to n. 

It is natural to assume that the energy density is proportional to the 
number of particles and antiparticles in unit volume (not to j0, but to 
[j~176 Then the fact that T~ with I 1 oo can be treated in the 
sense that the greater I~1 is, the more the number of particle and antipar- 
ticle taken separately, with their difference fixed. Apparently, x (and n) 
represents a quantity of the type (np +na)/ln~,-na[- 1. np is a concentra- 
tion of particles, n, is a concentration of antiparticles. But this problem 
needs a special investigation. 

5. THE TRANSF O RMATIO N PROPERTIES 

Let us investigate the law of transformation of ~ with respect to 
Lorentz transformation 

t-ot' = tChi ft + x shift 

x ~ x ' = c t s h i  ft + x C h i  ft (5.1) 

where. Chi and shi denote hyperbolic cosine and hyperbolic sine respec- 
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tively, fl is a parameter of transformation. The following law of transfor- 
mation of the quantities j ~ j l ,  Bol, S is obtained: 

jo.__~jo, = j o C h  i f l+ l j l  shi fl 

j L - - , j l '  = c j ~  shi  f l  + j l  C h i  f l  

B01--,B 1 =Bol 

s s'=s (5.2) 

Using (4.35) and (4.36), the following law of transformation of ~ is 
obtained: 

tk--->6' = e ~ (5.3) 

It is the law by which spinors are transformed (see, for instance, 
Bogoliubov and Shirkov, 1976). Thus ap is a spinor. 

It is easy to verify that equation (4.38) and each of the equations 
(4.54),(4.55) are invariant with respect to Lorentz transformation 
(5.1),(5.3). 

Let us consider a transformation of the coordinate reflection 

t--->t' = - t, x ~ x '  = - x (5.4) 

As far a s j  i is a vector and S is a scalar, the following transformation law is 
obtained: 

jo___>jo, ~ _j0,  jl___>jl,= _ j l  

BOl---~B(~ l = Bol, S---~S'--- S, K--->K'-'- K (5.5) 

From (4.35),(4.40),(5.5) the following law of transformation of ff and a 
follows: 

~b--->~b' -- i~ (5.6) 

a---~a' = - a  (5.7) 

It is easy to verify that equation (4.38) is invariant with respect to 
transformation (5.4), (5.6),(5.7). As concerns equations (4.54),(4.55), with 
the transformation (5.4),(5.5) equation (4.54) transforms into (4.55) and 
(4.55) transforms into (4.54). 
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Finally, let us consider the transformation that changes the compo- 
nent e of the world line orientation. It is connected with the change of the 
sign of a parameter that numbers points of a world line. This transforma- 
tion does not affect a coordinate system and can be represented in the 
form 

e---->8 t = - -  E,  ~-->,/,' = c - / l e ~  

x i ' ">x t i=x  i ( 5 . 8 )  

This transformation leads to 

jo._.jo, =jo, jl.._)jl, = j l  

tan(2cp)~tan(2cp') = - tan(29~), t a n x ~ t a n x '  = - t a n ~  

Let us suppose that (5.10) can be replaced by 

Then it follows from (4.6), (4.17) that 

Po--->P'o = -P0,  P l--*P'l = - P  1 

Applying (5.8),(5.10) to (4.35), one obtains 

From (4.40) 

W+ W+ - W + ,  W _ - - - ) W ' f W _  

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Investigation of the solution of equation (4.38) is a complicated and 
difficult problem. I hope soon to make some attempts to investigate 
equation (4.38) more. Here I confine myself to the following remark. 

6. DISCUSSION 

It follows from (5.8),(5.11),(5.13) that equation (4.38) is invariant with 
respect to transformation (5.8). With transformation (5.8) equation (4.54) 
transforms into (4.55) and vice versa. The transformation (5.8) changes the 
sign of the electric charge ee of the particle, i.e., a particle is transformed 
into antiparticle and vice versa. For this reason the transformation (5.8) is 
associated with a charge conjugation transformation. 

a ~ a '  = - a  (5.13) 
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If the electromagnetic field is absent, the steady-state solution of the 
(4.38) can be represented in the form 

tp=exp[('rl/h)(PoX~ 0 (6.1) 

where po, Pl are real constants satisfying the relation 

1 2 2 2 2  
~-~P0 - P  1 = m c (6.2) 

and W 0 is a column of four arbitrary numbers that are real or imaginary 
simultaneously. Expression (6.1) is a solution of the two-dimensional Dirac 
equation (4.53). An arbitrary linear combination of solutions (6.1) is a 
solution of (4.53) but, generally speaking, it is not a solution of the (4.38). 
In other words, for nonlinearity of the equation (4.38), its steady-state 
solutions (6.1) interact. Formally it manifests itself in the fact that the term 
aMctp of equation (4.38) vanishes for the solution (6.1), but, generally 
speaking, it is not equal to zero for a linear combination of expressions 
(6.1). This term describes an interaction of the plane waves (6.1). The 
interaction is connected with the presence of a gradient of the flux density 
ji (r becomes different from zero). It arises whenever f depends on a 
coordinate or on time. 

The main result of the paper is the following proposition. In the 
two-dimensional space-time a system of equations for tensors of integer 
rank can be written that can be approximated with a linear spinor equation 
(Dirac equation). This circumstance is surprising. The spinor fields are 
supposed to differ from the tensor fields strongly. For instance, particles 
described by a spinor field obey Fermi-Dirac statistics, whereas particles 
described by a tensor one obey Bose-Einstein statistics. The spinor Dirac 
equation is considered usually as an elementary equation that cannot be 
reduced to anything simpler. Here one discovers that an equation that 
differs from the Dirac equation very slightly can be obtained starting from 
the relativistic statistics of world lines. 

Strictly speaking, the possibility of approximation of the system (3.9)- 
(3.11) by means of a linear spinor equation is shown for the two- 
dimensional space-time only. The possibility of such an approximation in 
the case of four-dimensional space-time remains open. The question re- 
mains open, if the system (3.9)-(3.12) describes an ensemble of particles 

1 with spin ~. 
Such a possibility seems probable, if one takes into account two 

circumstances. (1) In the nonrelativistic approximation and in the case 
where Pi has a potential, the system (3.9)-(3.12) is equivalent to the 
Schr6dinger equation. (2) In the two-dimensional space-time the system 
(3.9)-(3.12) can be approximated by the Dirac equation. 
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APPENDIX 

Let us show that the equation 

r gj~ 4K 2h2 gitBi.jBt.k)tbk=O (A.1) 

for vector ~ has real solutions. Here 

h E 
K s .i. + B i B I  = J Ji - ~  .l .i (A.2) 

For the proof of this fact it is convenient to decompose vector qrr over 
eigenvectors of the matrix B i-k in the form 

4 

t I~= ~ a~t)u~o (A.3) 
1 = 1  

where u{1 ) are eigenvectors of matrix B:. k 

B:.kU~, = h i  u-it (A.4) �9 ()  () ()  

hc0 are eigenvalues. There are no summations over indices inside parenthe- 
ses. The matrix BJ.k can be represented in the form 

c ~ E,/c e /c E#c 
0 1-13 

B(k = 
�9 cE  2 -- H a 0 H 1 

cE  3 H 2 - H 1 0 

(A.5) 

where E-- {E l, Ez, E3}, H = {H 1, H2, H3} are certain vectors. A calculation 
gives the following for the eigenvalues hit ) and eigenvectors u~t): 

[( E2-H2)2 +4(EH)2] ' /2 - (E2-H2)  ,/2 
h ( 3  ) = - -  h ( 4  ) ~- i~, = i 2 (A.6) 
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u [ z ) = { 1 , ~ ( - A ( , ) E - r ' H + [ E x H ] ) }  

(1  1 (ivE_ih,lH + [E• "6)= ,~ 

( 1  1 ( _ ivE + iX , IH  + [ E •  (A.7) 

hi = ~(,) sgn(EH), v' = v sgn(EH) ( A . 8 )  

E 2 + H  2 + [ ( E 2 -  H2) 2 + 4(EH)2] 1/z 
e l  = 2 

E 2 + H 2 -  [ ( E 2 - H 2 )  z + 4(EH)2] '/2 

a3= 2 
(A.9) 

where (EH) and [E2xH]  are, respectively, a scalar product  and a vector 
one. Eigenvectors uo), -/ u~2 )' are real, but  u~3 ) and u(4 ) are complex with 

J *__  J ( u o ) )  -u(4  ) (A.IO) 

Here (*) denotes a complex conjugation. If CJ is real, then a0), a(2 ) a r e  
real, but a(3), a(4 ) are complex with 

* - ( A . I I )  a(3 ) -- a(4 ) 

Substituting (A.3) into (A.1) one obtains 

4 ( ) 
a(l)a(t, ) 1-- 2t2 - - ~ ( , ) h ( , , )  (u(og ,  kU~v))=O (A.12) 

l,r=J K 

Taking into account (A. 11), and  the fact that 

I2(1- )o, 
j k 

if l= l , l '= 2 or l= 2,1' = l 

if 1=3, l ' = 4  or I=4 ,  l ' = 3  

in other cases 

(A:I3) 
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and that by  means of (A.6) K 2 can be represented in the fo rm 

(A.14) 

one obtains f rom (A.12) 

01 j~ii + X2t2(,)/4 
a(')a(2) = I a~ 2 o3 ~.~3)/4 (A.15) 

I t  follows from (A.15) that  for  an arbitrary real a (2 )~0  the ao) is real. 
Thus, (A.1) has real solutions depending on  three real parameters:  

a(2 ), Re a(3), lm a(3 ). 
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